MATH 590: QUIZ 8 SOLUTIONS

Name:

1. Let $T: V \rightarrow V$ be a linear transformation with $\operatorname{dim}(V)=n$. (i) Define what it means for T to be diagonalizable and (ii) State an equivalent condition to the diagonalizability of T. (4 points)
Solution. (i) T is diagonalizable if there exists a basis $\alpha \subseteq V$ such that the matrix of T with respect to α is a diagonal matrix.
(ii) T is diagonalizable if and only if $p_{T}(x)=\left(x-\lambda_{1}\right)^{e_{1}} \cdots\left(x-\lambda_{r}\right)^{e_{r}}$, with distinct $\lambda_{i} \in F$, and for each λ_{i}, $\operatorname{dim}\left(E_{\lambda_{i}}\right)=e_{i}$, i.e., for each eigenvalue λ_{i}, its geometric multiplicity equals its algebraic multiplicity.
2. Determine whether or not the matrix $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 2 & 1 & 3 \\ 5 & 0 & 1\end{array}\right)$ is diagonalizable. You must justify your answer. (6 points).
Solution. $p_{A}(x)=\left|\begin{array}{ccc}x-2 & 0 & 0 \\ -2 & x-1 & -3 \\ -5 & 0 & x-1\end{array}\right|=(x-2)(x-1)^{2}$. Thus, A has eigenvalues 2 and 1, with algebraic multiplicities 1 and 2 , respectively.
$E_{1}=$ nullspace of $\left(\begin{array}{ccc}2-1 & 0 & 0 \\ 2 & 1-1 & 3 \\ 5 & 0 & 1-1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 0 & 3 \\ 5 & 0 & 0\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right)$, which has rank two. Thus, the dimension of the nullspace of this latter matrix is 1 . Therefore, $\operatorname{dim}\left(E_{1}\right)=1<2$, showing that A is not diagonalizable.
